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3-jm, 6- j  and isoscalar symbols for the icosahedral group 

D R Pooler 
Department of Physics, Homewood Campus, The Johns Hopkins University, Baltimore, 
MD 21218, USA 

Received 19 July 1979 

Abstract. Using a complex base with a numerical system of labelling we calculate sym- 
metrised coupling symbols (the 3-jm symbols) for the icosahedral group. We make full use 
of Racah’s Lemma and explicitly state all the phase standardisations involved. The 3-jm 
symbols are chosen in a manner that leads to them possessing reordering symmetries that 
are almost as straightforward as in the case of SO(3). We state the basic isoscalars and use 
the 3-jm’s to obtain invariant 6-j  symbols. 

1. Introduction 

In this paper we study coupling theory for the icosahedral group (I). This is the 
symmetry group of the icosahedron and of the dodecahedron. Coupling theory has 
been developed for this group before (Golding 1973) but we feel that our approach 
leads to coupling symbols in a form that is substantially easier to use. We repeat the 
earlier work in an improved notation (due to McLellan 1961) and with explicitly stated 
phase standardisations for both I and SO(3). Certain unconventional features of 
Golding’s theory (attaching J labels to irreducible representations of I for example) are 
removed. In addition, we calculate the 6-j  symbols and give the isoscalar factors for the 
basic irreps. A detailed discussion of the relationship between this paper and Golding 
(1973) is given in § 5.1. 

The motivation for undertaking this work has been the recent work of Khlopin et a1 
(1978). They show that Jahn-Teller models with continuous symmetries can be set up 
for icosahedral symmetry by the judicious selection of coupling strengths. This is an 
analogous situation to that known to exist for octahedral symmetry (Pooler 1978). 

There exist several systems which possess exact or approximate icosahedral sym- 
metry. For example, in crystalline boron carbide (BI2C3) the twelve boron atoms form a 
nearly regular icosahedron. This was discovered by Zdanov and Sevastianov (1941), 
who used x-ray diffraction techniques, and confirmed by Clark and Hoard (1943). A 
summary of the properties of boron carbide can be found in Durrant and Durrant 
(1 970). 

Also there exist rare-earth double nitrates in which a rare-earth ion is surrounded by 
twelve oxygen atoms located almost exactly at the vertices of a regular icosahedron. 
Such an ion can be treated as though it were acted on by a crystal field of icosahedral 
symmetry instead of the real field of symmetry (see Judd 1955, 1957). The systems 
in which this would seem to be a good approximation do, however, involve half-integer 
irreps. 

0305-4470/80/041197 +20$01.50 0 1980 The Institute of Physics 1197 
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For other examples of icosahedral symmetry see the references in Khlopin et a1 
(1978). A Klug, in a private communication to Cohan (1958), has stated that certain 
proteins have icosahedral symmetry. 

In order to be able to construct a coupling theory for the icosahedral group we need 
to know some details of the group, and in particular, of its representation theory. The 
group has five integer irreducible representations (irreps) (an integer irrep is one that is 
equivalent to a real one). There are several notations in use for the irreps. The notation 
used here is given in the first column of table 1 together with alternatives (in 
parentheses). The second column gives the dimensionality [ ] of each irrep and the rest 
of the table the non-trivial Kronecker products for the group with the symmetric parts 
of the squares given in square brackets. Repeated irreps occur in Kronecker squares 
and therefore the group is not simply reducible, although it possesses only real 
characters. 

In the following section we set up a basis of ‘kets’ that are irreducible under both 
SO(3) and I. These are expressed in terms of SO(3) 2 SO(2) vectors with stated phase 
standardisations. The basis states are chosen to have simple time reversal properties. A 
numerical labelling is selected following McLellan (1961) because that leads to ease of 
application. In § 2.2 we state Racah’s Lemma, which will be used to arrive at 
icosahedral coupling, and define isoscalar factors. There we also give the connection 
between icosahedral coupling coefficients and the related symmetrised symbols (the 
3-jm symbols). 

In 0 3.1 we show how we can define 3-jm symbols that have reordering symmetries 
which are almost as straightforward as those for SO(3) and in § 3.2 we discuss the 
labelling of repeated irreps. Then in 3 3.3 we see how our choice of 3-jm properties 
limits the phase freedom in the definition of the isoscalar factors. Then we state the 
symmetry of the 3-jm symbols under complex conjugation. We then know enough to 
calculate the 3-jm symbols (0 3.5) which are tabulated in table 3. In § 4 we use the 
3-jm’s to evaluate 6- j  symbols and discuss their properties. In the final section (0 5) we 
discuss the relation of Golding’s (1973) work (9  5.1), discuss questions of reality (8  5.2) 
and summarise the paper (§ 5.3). 

2. The group chain SO(3) 2 1  

2.1. An SO(3) 3 I basis 

It is economical to make full use of SO(3) when setting up coupling theory for point 
groups. Coupling for SO(3) is known and that of I can be found using Racah’s Lemma. 
While doing this it is important to bear in mind the difference between an SO(3) 
property and a subgroup property. The permutation symmetry of a triple of irreps of 
the subgroup is an example of the latter type of property. A triple of irreps (r1rJ3p) 
has the defining property that the Kronecker product of any two of the irreps (found 
from table 1) contains the third irrep of type p. Before using Racah’s Lemma it is 
necessary to specify the phase standardisations to be used in SO(3) and I. 

First we choose standard irreps. We do this by specifying bases. This involves two 
phase choices. We must specify the representation matrices and the connection 
between conjugate irreps (these are equivalent representations of both groups). For the 
rotation group we choose the representation matrices of Wigner (1959 ch 15) and the 
1-jm (or 1- j  or 2-jm) which connects conjugate irreps to be 

( j ) ” ,  = (-I)i-m8(m, -m’). (2.1.1a) 
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Table 1. The Kronecker products for the icosahedral group. This table also serves to 
summarise the notations for icosahedral irreps. 

Dimension Product with 
Irrep(T) [ri Ti T2 G H 

For the definition of 1-jm symbol see Wigner (1940p 106) or Butler (1975 p 549). j and 
m have their usual meanings. Equation ( 2 . 1 . 1 ~ )  implies that the effect of the time 
reversal operator 6 on SO(3) bases kets is 

6 1 jm > = I rm) = (- I ) ~ + ~  1 j - m ) (2.1. l b )  

where 7 stands for the complex conjugate irrep. McLellan (1961) has chosen bases of 
SO(3) that are also standardised with respect to I: 

(2.1.2) 

where the detailed definitions are to follow. c distinguishes between repeated icosa- 
hedral group irreps within a given SO(3) one. It is not required for the low J irreps and 
we drop it. C ( J m r y )  form a unitary matrix. As some are not real the form of equations 
(2.1.1) is not preserved by this transformation. The basis (2.1.2) could be chosen to be 
real but we see no advantage in so doing and the use of the complex base leads to a more 
compact notation (examine table 2, for example). We discuss this point in slightly more 
detail in § 5.2. Here we choose the basis so that we have the representation matrices 
given in McLellan (1961 § 3). The effect of time-reversal is specified by requiring 

C ( J - m r - y ) =  ( - l )J+mC(Jmry)  (2.1.3) 

which implies, using equation (2.1.1b), 

elry)=lFY)= py) (2.1.4) 

where we have made a particular choice of numerical label as listed in table 2 (due to 
McLellan 1961). Note that if we extended our considerations to the double icosahedral 
group I* then, keeping to McLellan’s labelling, 

where equation (2.1.3) is now only for positive y. Equation (2.1.4) can be expressed in 
terms of a 1-jm symbol: 

( F b Y  = my = a y ’ ,  -7) .  

The above standardisations specify the required basis up to a phase factor for each irrep. 
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In order to have the usual relationship between 3-jm’s and 1-jm’s, 

and isoscalars involving A positive we need IA 0)=+10 0) and because of the 
requirement (2.1.4) the phases have to be real, but are otherwise arbitrary. To specify I 
coupling totally we need only consider those bases that involve the following branching 
laws, expressed in the form J + W: 

O+A, 1 + T1, 2 + H ,  3+T2@G and 4 + H O G .  

The bases with these phases chosen are given in table 2;  they correspond in phase to 
those of Golding (1973). We include a note of Golding’s notation which is harder to 
use. They differ in the sign of 14G-y) from McLellan’s (1961). We note that Cohan 
(1958) has also produced an SO(3)  = I  basis. 

Table 2. A complex basis standardised according to the group chain SO(3) 3 I. 

In Golding’s 
(1973) notation SO(3) 3 I state Linear combinations of ljm) states 

lo 0 )  
-11 *l) 

ill 0) 
-12 *2) 

i12 *I) 
I2 0) 

-(2/5)”’/3 ~ 3 ) - ( 3 / 5 ) ’ / ~  il3 *2) 
i13 0) 
(3/5)”213 T 3)-(2/5)”2 i13 *2) 
13  *1),,2 

F(1/15) 1 4 ~ 3 ) * ( 1 4 / 1 5 ) ’ / ~  i14 *2) 
*(8/15)1’2 il4F4)* (7/15)’’214 *l) 

(14/15)i/2 i ~ 4 ~ 3 ) - - ( 1 / 1 5 ) ~ ’ ~ ~ 4  *2) 
-(7/15)1’2/474)-(8/15)1’2 i14 k l )  

14 0) 

2.2. Coupling for SO(3) 3 I and Racah’s Lemma 

We have not yet specified the phase connection that we are going to use for SO(3)  
coupling. As it is frequently used we decided on the Condon and Shortley (1970) phase 
convention which means that in terms of the 3-jm symbols of Rotenberg e t a l ( l 9 5 9 )  we 
have as coupling coefficient for SO(3)  in the SO(3)  3 SO(2) base 

Changing to the SO(3)  = I  base (2.1.2) we obtain coupling coefficients in that base: 

J 2 r 2 Y 2 / J w  
= 1 C(JlmlT1 yl)C(J2mzT2-yz)~(JmTy)(J lm1;  ~ ~ m ~ i ~ m )  (2.2.2) 

m l m z m  
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where we have omitted the multiplicity label c. Then by Racah’s Lemma (see Racah 
(1949)  for original SO(3)  derivation and Wybourne (1974 0 19.14) for a discussion of 
the generalisation to other groups) for low J,  

(JlrlY1; ~ ~ r ~ ~ ~ j ~ r ~ )  = (Jlrl; ~ ~ r ~ 1  Imp(rlY1; r 2 ~ 2 1 ~ r ~ )  (2 .2 .3)  
P 

where ( r lyl ;  T2y21pTy) is an icosahedral coupling coefficient, p is a multiplicity label 
distinguishing between equivalent r’s in rl 0 r2 and the component independent factor 
(JIT1; J2r21 lJl?)p is known as an isoscalar factor. The isoscalars are real as is shown in 
8 3 .4 .  When there is only one way of constructing a r state from J1 and J2 states the 
isoscalar factor reduces to a phase. 

The above series of equations specifies the icosahedral coupling coefficients 
( T 1 y 1 ; r 2 y 2 j p r y )  up to a phase factor between the isoscalars and the coupling 
coefficients. This is arbitrary unless we fix a relationship between the coupling 
coefficients and a symmetric 3-jm symbol (see Butler 1975 § 5). If the 3-jm symbols 
have the usual properties (listed in § 3 )  we have only one phase per triple left which we 
use to have as many positive isoscalars as possible. We decide on the so-called sensible 
phase convention: 

(2 .2 .4)  

where p = 1 or 2 .  
Racah’s Lemma (2 .2 .3 )  could be expressed in terms of 3-jm symbols for SO(3)  and 

I. This would lead naturally to another type of isoscalar factor (see Butler 1975 § 13):  

(2 .2 .5)  

The phase factor arises from the use of the ‘non-sensible’ Condon and Shortley phase. It 
is easier to expand coupled kets and pick out coupling symbols directly (see example in 
§ 3.5)  rather than find SO(3)  3-jm’s in the SO(3)  3 I basis with the aid of 

and then find the isoscalars of type (2 .2 .5) .  Also working with coupling coefficients 
means that orthonormality can be checked at a glance. For these two reasons the actual 
calculation is performed in terms of coupling coefficients and then conversion is made to 
3-jm symbols. In table 4 we give the values of both types of isoscalars for low J. 

3. The isosahedral 3-jm symbols 

3.1. Reordering symmetries 

Before evaluating the icosahedral 3-jm symbols we discuss the symmetries that we 
require them to possess together with the phase freedom that allows these requirements 
to be met. Firstly, we note that if we reorder the columns of a general 3-jm symbol then 
it is multiplied by a unitary matrix: 
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T being a permutation of (123). For a general discussion of reordering symmetries see, 
for example, Butler (1975 8 6).  For a simply reducible group m reduces to a phase 
which can be chosen to be +1 for even permutations and (-l)rl+rz+r for odd 
permutations, where (-l)r is a number of modulus one defined for each r. In the case 
of the icosahedral group we can choose phases to make the symmetries as simple for all 
but one triple. A similar situation occurs in octahedral double-group coupling theory 
(Harnung 1973). 

In the approach used in this paper the phase freedom used to obtain maximally 
symmetric 3-jm symbols is that of the isoscalars. Often no such freedom exists. An 
obvious example is a 3-jm symbol involving only one irrep. For such symbols we must, 
in general, choose m ( r )  according to whether the identity occurs in the symmetric, 
antisymmetric or mixed symmetry part of r@rOr. If a mixed symmetry part exists, 
then we cannot diagonalise m ( n )  for all n. For a finite group we can ascertain this by 
ascertaining whether 

x ( ~ ' ( R ) ~  = x ( ~ ' ( R ~ )  
R R 

(3.1.1) 

where ,y'"(R) is the character of the element R. For the icosahedral group equation 
(3.1.1) is true for all irreps which means that there are no mixed-symmetry subspaces. 
(Such groups are called simple phase groups.) This implies that the rule for the triples 
( r r rp) is the same as for the triples of form ( K T ' p ) ,  namely, that the matrix m ( T )  can 
be chosen diagonal and that it must be +S,,, for even permutations and *tsppt for odd 
ones according to whether r' chosen in the pth manner is in the symmetric or 
antisymmetric part of TOT respectively. If all the irreps involved are different then we 
can make m(n),,, = S p p ,  but we choose to make it *Sop ,  for odd r so that m resembles 
the familiar simply reducible version as closely as possible. 

We can summarise our choices as follows. First. we define 

+I ,  
-1, 

if r is in the symmetric part of r@ 
if r is in the antisymmetric part of TOT 

which means that 

+1 
-1 

for l- = A, G or H 
for r = TI  or T2. 

(-1y = [ (3.1.2) 

Then according to the discussion in the preceding paragraph mPp, = (-l)rl+rz+r 3 8 P P '  
except for the triple (HHG1). This is because G occurs in the symmetric and in the 
antisymmetric part of HOH. We use the multiplicity label 1 for the antisymmetric case 
(this is because G occurs first in J = 3 which is an odd irrep of S0(3)-see§ 3.2 for a 
fuller discussion of our choice of multiplicity labels). Apart from G, irreps either always 
occur in the symmetric part of squares or always in the antisymmetric. Thus the 
reordering symmetries of the 3-jm symbols are 

where (-l)4(r1rzr34) equals -1 if (r1rJ3p) is any permutation of (HHG1) and 
otherwise. This equation is a mnemonic of the symmetry. 

tl 
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3.2. Multiplicity 

In order to calculate the icosahedral coupling symbols we shall couple together two 
states to form a third which transforms in the standard way under I. That is in the way 
that all states belonging to that irrep in table 2 do. We treat multiplicity by choosing 
repeated irreps to transform in different ways under SO(3) .  First, we choose the vectors 
to be coupled to have the lowest J values that give a non-vanishing result. Then we take 
the resultant to have all the available J values. These states must necessarily be 
orthogonal and they form the repeated irreps. We number these in order of increasing 
J. For the above cases we choose isoscalar phases to give the symmetry properties 
mentioned in § 3.1. Once we have covered one order of each triple then all other 
symbols are fixed. This procedure gives a consistent labelling of repeated irreps. We 
may not label arbitrarily because of the requirements imposed by the 3-jm reordering 
symmetries. For example, (HHG1) means that we have coupled 2 H  to 2 H  to form 3 G  
and (HGH1) that we have coupled 2 H  to 3 G  to form 2 H  whereas ( H H G 2 )  refers to 
2 H  coupled to 2 H  to give 4G and ( H G H 2 )  to 2H coupled with 3 G  to give 4H. 

3.3. Isoscalar phases 

By choosing symmetric 3-jm symbols (carried out in § 3.2) and by fixing the relation 
between coupling coefficients and 3-jm symbols we have implicitly chosen most of the 
isoscalar symbol phases. We may still choose one basic isoscalar to be positive for each 
triple (a basic isoscalar is one used in the calculation of the coupling symbols for I-all 
others are fixed). 

For triples consisting of three equivalent irreps we choose to have the isoscalar 
positive (that is (Jlr; Jlrl IJT)@ 2 0). If we have only two equivalent irreps then we 
make (Jlr; JITl lJT')p positive. If all irreps are inequivalent then we could choose to 
have all isoscalars positive corresponding to the fact that we could have m ( r ) p p t  = Sop, .  
Having chosen mop, = (-l)rl+rz+r (-1)q"rrp)8pp, we can only choose one positive-we 
choose those with (rlr2r) = (T2GTl) ,  (T2HT1),  (GHT1) and (T2GH).  

The remaining isoscalars are fixed by our choice of reordering symmetries (3.1.3) 
and of the relation between coupling coefficients and 3-jm symbols. These choices lead 
to the following connections between isoscalars: 

and 

The latter relation is known as reciprocity for isoscalars (see Wybourne (1974) pp 
248-9). One could equally work in terms of symmeirised isoscalars, in which case 
(3.3.1) becomes 

3.4. Conjugation of symbols 

Another 'symmetry' of the 3-jm symbols follows from the fact that raising all 
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components of a 3-jm symbol is equivalent to complex conjugation 

(3.4.1) 

which implies that 

( r l - y l ;  r2-yz lr-y)P = ( r l y l ;  r2y2try)P. 
This means that we need only couple to form states with positive components in order to 
obtain all the symbols. Condition (2.1.3) means that 

which implies that the isoscalars are real-something we have assumed so far. 

3.5. Calculation of the 3-jm symbols 

We are now in a position to use Racah's Lemma to find the icosahedral 3-jm symbols. 
The following procedure is followed for one order of each triple and for positive y. The 
symmetry relations give all the symbols not evaluated in this process. First we form, 
using the bases given in table 2, 

I(JiJz)Jry) 

= c (Jm r y)V1 m 1 ; ~2 m2jJm >IJ1 m dIJ2md. 
"lmz 

Then, using the inverse of the transformation given in table 2 we express the coupled 
states in terms of icosahedral states: 

where r1r2 range over values such that rl J1, T2 c Jz  and r 3 rl Or2. By the above 
process we have transformed to SO(3) coupling in the SO(3) 3 I base (see 2.1.2). We 
can break up the product space using Racah's Lemma: 

I (Ji J z )  J r  Y) 
= (Jlrl; J2r21 IJr),crlyl; ~ 2 y 2 ~ p ~ y ) ~ r l y l ) ~ r 2 y 2 ) .  

P Y l Y Z  
rlrz 

As we have defined the relative phases between the isoscalars and coupling coefficients 
the decomposition can be performed uniquely using the orthonormality of the coupling 
coefficients. The isoscalars are also orthonormal in the sense that 
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and 

which act as a check. Recall that only if J1 and J2 are the lowest SO(3) irreps containing 
rl and rz do we define the coupling symbol. Otherwise it is specified. An example 
should make the above clearer. 

From table 2. 

1(33)1T10) = il(33)lO). 

Using SO(3) coupling in the SO(3) 3 SO(2) base, 

j(33)1T10) = i&( ')13m)/3 - m) 
m m -m 0 

Using the inverse of table 2 (recall the unitary nature of the transformation involved), 

1(33)1 T1O) = (f)'/'[(i/2)13G - 2)13G2) - (i/2)13G2)13G - 2) 

+(i/2)13G1)/3G- 1)-(i /2)/3G- 1)13Gl)] 

- (!)'"[-(i/JZ)13G2)/3T2-2)+(i/J~)~3G -2)/3T22)] 

+(!)"'[(i/JZ)13T22))3G -2) - (i/JZ)13T2-2)/3G2)] 

where we have broken the sum up into the different portions and extracted the 
isoscalars by making the coupling coefficients orthonormal and using the phase con- 
vention for isoscalars. We can see that 

and 

(G-2;  G2/T10)=(G1;  G-lITlO)=i/2,  

(G2;  Tz-21T10)= -i/JZ, 

the other symbols being related to these by the symmetry properties. The relation 
(2.2.4) then gives the 3-jm symbols as tabulated in table 3. The basic isoscalars, in both 
forms, are tabulated in table 4. The 3-jm symbols agree with Golding (1973 table 4) 
after differences of notation and phase standardisation are allowed for with the 
exception of 

(" *I)=&.  

0 0 0  

He makes this 1/JE which does not lead to orthonormality. 
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Tz H H  
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1 

Table 3. The icosahedral 3-jm symbols. The triples are listed in standard order and the 
symbols are in standard form. Nonstandard symbols can be obtained by using equation 
(3.1.3) and/or equation (3.4.1). 

T,  Tz H 

-2 0 2 
2 2 1 
2 -2 0 
0 0 0 

1 

1/JE 
i / J s  
1 /_.’30- 

- J 2 / J 1 5  

T2 H Ti 1 

2 2 1  
1 -2 1 

-1 0 1 
-2 2 0 

1 Tz G H 

2 1 2  
0 -2 2 
2 2 1  

-2 1 1 
0 -1 1 

-2 2 0 

1 / 4 5  

0 0 0 1 -2 /J15  

H H T 1 1  1 

G H T l  1 

2 2 1  
-2 1 1 
-1 0 1 

1 -2 1 
-2 2 0 
-1 1 0 

G G H I  1 

2 1 2  
-1 -1 2 
i 2 1  

-2 1 1 
-2 2 0 
-1 1 0 

G H H I  1 

2 1 2  
-2 2 0 
-1 1 0 1 2 2  

2 2 1  
1 -2 1 

-2 1 1 
-2 2 0 
-1 1 0 

G G G I  1 

To use table 3 to find a 3-jm symbol put it in the following standard form. First, use 
the reordering symmetries to make rl 2 r2 2 where A < T1 < H < T2 < G. Then, put 
the components in the order lyll 3 /y21 a /y31 whenever possible (i.e. when repeated 
irreps occur). Next, use the complex conjugation symmetry to make the first non-zero 
component reading from right to left positive. The triples occur in the table in 
‘numerical o rde r ’4 . e .  HTl T1 is before HHTl and so on. 
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Table 4. The isoscalar factors involving the basic irreps. The first column contains the 
conventional symbol and the second the symmetrised version. Other symbols can be 
obtained from equation (3.3.1). 

1 Ti 1 Ti 1 7’1 1 1 
1 T 1 1 T 1 2 H 1  1 
2 H 2 H l T 1 1  1 
3 G 3 G l T 1 1  1/45 
3 T 2 3 G l T 1 1  J5/_Ji 
3 G 2 H l T 1 1  2IJ7- 
3 T 2 2 H l T 1 1  “141 

3 T2 3 T2 3 T2 1 1 LJ3 - 
3 G 3 G 2 H 1  43/J7 

3 G 3 G 3 T Z 1  42/23 

3 T Z 3 G 2 H 1  1 /_J7 - 
3 T 2 3 T 2 2 H 1  42/47 
2 H 2 H 2 H 1  1 
2 H 2 H 4 H 2  1 
3 G 3 G 3 G 1  0 
3 G 3 G 4 G 1  2 J2j JE 
2 H 2 H 3 T 2 1  1 
2 H 2 H 3 G 1  1 
2 H 2 H 4 G 2  1 

-1 

1 
A/ 3 

-2147 
213 

4. Icosahedral 6- j  symbols 

4.1. The definition 

For any compact or finite group we can define an invariant 6-j  symbol by considering 
the coupling of three kets (see Butler 1975 Q 9). The definition reduces to 

P1 P 2  P 3  P 4  

(4.1 .l) 

As can be seen from equation (4.1.1) the 6-j  symbol vanishes unless certain irreps form 
triples. By placing the multiplicity labels above the symbol we enable an extension of a 
method of Judd’s (1963 p 57) for recalling which irreps must form triples to be used. The 
irreps sitting on the circles are the required ones: 
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4.2. Properties of the 6-j symbols 

The 6 - j  symbols are real because I has only real characters (see Butler 1975 equation 
(9.1 1)). They form the elements of an orthogonal matrix: 

P1 P 2  P 3  P 4  P1 P 2  p;  P: 

(see Butler 1975 equation (9.7)). If one of the irreps in the 6-j is the identity we find 
(Butler 1975 equation (9.18)): 

1 1 P 3  Pul 

S ( P 3 ,  P 4 )  
(- 1) rl +rZ+r3( - 1) q(rl r 2 r 3 P 3 )  {F: :: 3 = ([rl~[r2~)1'2 

A symmetry of the symbols involves the partial exchanging of the rows (see Butler 
1975 equation (9.8)): 

P1 P 2  P 3  P 4  P 4  P 3  P 2  P1 

Note that the multiplicity indices move so as to keep themselves attached to the same 
triple. The symbols are also invariant under even permutations of the columns and 
under odd permutations they are multiplied by (-l)n, where n is the number of times 
the triple (HHG1) occurs (see Butler 1975 equation (9.9)). This means that some 
symbols containing an odd number of (HHG1) triples must vanish. For example, 

1 ' 2  2 2  1 2  2 2  

{ G  H} =-{G H} E O ,  
H H H  H H H  

We are left with 216 non-trivial symbols to calculate. 

4.3. The calculation of the 6-j symbols 

To calculate the 6- j  symbols we use the recoupling relation (Butler 1975 equation 
(9.12)) : 

P1 P 2  P 3  0 4  

We choose the 3-jm on the left so as to minimise the number of terms to be summed 
(usually by setting as many of y l ,  y2 and y3 equal to zero as is possible). If p4 can take on 
two values then we first attempt to use the symmetry properties to obtain a new P 4  that 
cannot. If this fails we select y l ,  y2 and y3 so that the p4 = 1 version of the 6-j vanishes, 
calculate the p4 = 2 version and then use the result to find the other one. 
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Table 5. Invariant 6-j  symbols for the icosahedral group. These are in the standard order 
and form mentioned in the text. Other symbols are related to them by symmetry. We have 
marked the multiplicity labels of those symbols that change sign under odd column 
permutations with an asterisk. A blank in the multiplicity column represents 1 1 1 1. 

6-j  symbol Ti T2 G rl r2 r3 r4 rs r6 P I  P 2  03 P4 

6 0 0  
s o 0  
4 0 0  

3 1 2  
3 1 1  
3 1 0  

3 0 3  
3 0 2  
3 0 1  

3 0 0  

2 2 2  
2 2 1  

2 2 0  

2 1 3  
2 1 2  

2 1 1  

2 1 0  

2 0 4  
2 0 3  

2 0 2  

2 0 1  

2 0 0  

-1110 
71ioJ21 

114 
0 

0 
-116 

2/15 

-2/SJ6 

-1112 
116 
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Table 5-continued. 

P 4  6-1 symbol 

1 3 2  
1 3 1  

1 3 0  

1 2 3  
1 2 2  

1 2 1  

1 2 0  

1 1 4  

1 1 3  

1 1 2  

1 1 1  

1 1 0  

Tz H H 1 1 1  
2 1 1  

G Tz H H Tz Ti 
G T2 H H TI Tz 
G T2 H Tz Ti H 
G T2 H TI T2 H 
Tz T2 H H H Ti 1 1 1  

1 1 2  
T2 T2 H H Ti H 
T2 H H T2 H TI 
G G G  G T2 TI 

G G G  T2 H TI 
G G T2 G G TI 

G G T2 G Ti H 
G G TI G H T2 
G G TI G T2 H 
G G TI Tz H G 
G T2 H G TI H 
G G Tz H TI H 1 1 1  

G G TI TZ H H 1 1 1  

G G H  T2 Ti H 
G G H  7-2 H Ti 
G Tz H G H TI 1 1 1  

1 2 1  
G G T2 H H Ti 

2 1 1  

1 1 2  
G G TI H H T2 
G G H  H TI T2 
G T2 H H H TI 1 1 1  

G TZ H TI H H 1 1 1  
2 1 1  

G H H  T2 H TI 1 1 1  
1 1 1  

G T2 Ti H H H  1 1 1  
2 1 1  

T2 H H H H TI 1 1 1  

1 1 2  
G T2 H H TI H 

Tz H H TI H H 

1 1 2  

2 0 
-11642 

11342 
0 

1% -1 /2JU 
1 -116410 

-112410 

1 -215414 
1 -213J70 

1/10 
1* -1110 
1 116 
1* 1/10 
2 116 - 

1 1 6 4 s  

1* - 1 / 2 J N  
1 1/6J10 

n 



Symbols for the icosahedral group 1211 

Table 5-continued. 

Ti T2 G rl r2 r3 r4 r 5  r6 PI P 2  P3 P4 6 - j  symbol 

1 0 5  
1 0 4  

1 0 3  

1 0 2  

1 0 1  

1 0 0  

0 6 0  
0 5 0  
0 4 0  

0 3 3  
0 3 2  
0 3 1  

0 3 0  

0 2 4  
0 2 3  

0 2 2  

0 2 1  

0 2 0  

G G G  G G Ti 
G G G  G H Ti 
G G H  G G Ti 
G G G  H H TI 1 1 2 1  
G G H  G Ti H 
G G H  H TI G 
G G H  G H Ti 1 1 1 1 *  

1 1 2 1  
G G H  H H TI 1 1 1 1  

1 1 2 1  
G G H  H TI H 1 1 1 1 *  

1 2 1 1  
G H H  G H Ti 1 1 1 2 *  

1 1 2 2  
1 1 1 1  

G G Ti H H H  1 1 1 1  
1 2 1 1 *  
2 2 1 1  

G H H  H H Ti 1 1 1 1 *  
1 1 2 2  
1 1 1 2  
1 1 2 1 *  

G H H  Ti H H 1 1 1 1  
2 1 1 2  

H H H  H H T1 1 1 1 1  
1 1 1 2  
1 1 2 2  

T2 T2 7-2 T2 T2 T2 
T2 T2 7-2 T2 T2 H 
T2 T2 H T2 T2 H 

G G T2 T2 T2 G 
G G T2 T2 T2 H 
G T2 H T2 T2 H 
G T2 H T2 H T2 
T2 T2 7-2 H H H  
T2 T2 H T2 H H 
T2 T2 H H H T2 1 1 1 1  

1 1 2 1  
G G T2 G G T2 
G G T2 G H T2 

7-2 T2 T2 T2 H H 

G G H  T2 T2 G 
G G T2 T2 H H 1 1 1 1 *  

2 1 1 1  
G G T2 H H T2 
G T2 H G T2 H 
G G H  T2 T2 H 
G T2 H H H T2 1 1 1 1  

1 1 2 1  
G T2 H H T2 H 
G T2 H T2 H H 1 1 1 1 *  

2 1 1 1  
T2 H H T2 H H 

1/12 
-116 

-1/10- 
- 1 / 5 J c  
- ~ / ~ J I o s  
-1112 
-1110 
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Table 5-continued. 

6 - j  symbol 

0 1 5  
0 1 4  

0 1 3  

0 1 2  

0 1 1  

0 1 0  

0 0 6  
0 0 5  
0 0 4  

0 0 3  

0 0 2  

0 0 1  

T2 T2 H H H H  1 1 1 1  
1 1 2 1  

G G G  G G TZ 
G G G  G T2 H 
G G T2 G G H  
G G G  T2 H H 2 1 1 1  
G G H  G T2 H 
G G T2 G H H  1 1 1 1 "  

2 1 1 1  

G G T2 H H H  1 1 1 1  
G G H  T2 H G 

1 2 1 1 "  
2 2 1 1  

G G H  H H T2 1 1 1 1  
1 1 2 1  

G G H  T2 H H 1 1 1 1 *  
2 1 1 1  

G T2 H G H H  1 1 2 1 *  
2 1 2 1  
1 1 1 1  

G T2 H H H H  1 1 1 1  
1 1 2 1  
2 1 1 1  
2 1 2 1  

G H H  TZ H H 1 1 1 1  
2 1 1 2  

T2 H H H H H  1 1 1 1  
1 1 2 1  
1 2 2 1  

G G G  G G G  
G G G  G G H  
G G G  G H H  2 1 1 1  
G G H  G G H  
G G G  H H H  2 2 2 1  

1 1 2 1  
G G H  G H H  1 1 1 1  

2 1 2 1  
G G H  H H G  1 1 1 1  

1 1 2 1  
G H H  G H H  2 2 2 2  

2 1 1 2  
1 1 1 1  

G G H  H H H  1 1 1 1  
1 2 1 1 *  
2 2 1 1  
1 1 2 1  
2 2 2 1  
1 2 2 1 *  

G H H  H H H  1 2 2 1  
1 1 2 1  
2 1 2 2  
2 2 2 2  
1 1 2 2 *  

-1112- 
113410 
7160- 

1/2410 
- 1 / 6 J G  

-1110 
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Table 5-continued 

Ti T2 G rl r2 r3 r4 r5 r6 P1 P 2  P3 P 4  6-1 symbol 

1 1 1 1  4/35 
2 1 1 2  2/35 

1 1 2 2  2135- 
1 2 2 2  -1/7J5 
2 2 2 2  -11210 
1 1 1 1  -3170 

0 0 0 H H H  H H H  1 1 1 2  0 

We tabulate the 6-j  symbols in table 5. The symbols are listed in descending order 
of N(T1)N(T2)N(G)  where N ( r )  is the number of r’s occurring in the symbol. All the 
6-j  symbols are either in the table or related to one that is by symmetry (we omit those 
that vanish by symmetry). The representative is selected in a manner that is an 
extension of the ordering used in Rotenberg et a1 (19.59) for SO(3)  6- j  symbols. This is 
summarised in 

where irreps linked by solid arrows (say rl +. r2) are chosen so that rl 5 r2 using the 
same ordering of irreps as above ( A  < TI  < H < T2 < G) .  In the case of dotted arrows 
we order the irreps if possible (this occurs when there is an equality elsewhere in the 
symbol). Occasionally this ordering distinguishes between symbols that are equal by 
symmetry-we only include one. 

5. Discussion 

5.1. Comparison with the work of Golding 

In this paper we have set up coupling theory for the icosahedral group. In doing this we 
have followed the general guidelines of Butler (1975). Before that general framework 
had been set up, Golding (1973) calculated what amount to 3-jm symbols for the group. 
The present paper keeps to the same basis states as used in Golding (1973) but we have 
improved the notation and the definition of multiplicity labels, redefined phases and 
have improved the treatment of the symmetry of the 3-jm symbols resulting from time 
reversal. The reasons for these changes are that Golding’s approach leads to symbols 
that are somewhat hard to use. 

One difficulty is that Golding attaches a J label to each irrep of I. This is an improper 
procedure because I is a group in its own right and not just a subgroup of SO(3). The 
low J’s  that symbols come from can be used to label repeated irreps but the multiplicity 
label is a property of triples and not of individual irreps. This is particularly important 
when we calculate 6-j  symbols as then each irrep occurs in two different triples. We 
define multiplicity labels properly but using the same general idea as Golding, in 8 3.2. 
In addition to this use of J labels as multiplicity labels, Golding also uses (-1)’1+J2+J3 
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disguised as (-l)rl+''z*'' as the reordering phase. This is subject to the same criticisms 
as in the multiplicity case. 

The second criticism that one can make is that the symmetry of symbols under 
negation of all components (time reversal) is unnecessarily complicated by the intro- 
duction of the phase of this symmetry in SO(3) which has nothing to do with it (property 
C p 665 of Golding 1973). The use of non-numerical labels for irrep components 
further complicates the issue. We adopt instead the labelling used by McLellan (1961) 
whereupon a '+  -a. Golding has 

.( r2 r2 r3) = (-l)r,+r2+r3v( rl 
b c  --(a) - ( b )  - ( c )  

This involves four moves to obtain the results summarised in equation (3.4.1). For 
example, 

which we know because it is an imaginary quantity. 
Additionally, the sign of the isoscalars is not stated. It is hoped that by stating all our 

assumptions of this type we have made it easy to check and use the results of our 
calculations. 

5.2. Reality 

As the icosahedral group has only integer irreps we could choose a base leading to real 
3-jm symbols. Such a base is shown in table 6.  The real base is more complicated than 

Table 6. A real base for the icosahedral group. The polynomials in the third column are 
proportional to the states when the latter are made up from the lowest possible J states. 

Relation to the complex 
Real state base Transformation properties 
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the one in table 2 from the SO(3) 3 I point of view and leads to symbols which have 
some of the symmetries 'hidden'. For example consider 

J7 
(" € E X  " ")2=-(" Y Z E  " ")2=-( : : :) =5J6* 

The information contained in these three symbols is contained in our single 
(-2 - 2 )  . Another advantage of the complex base is that the numerical labels 
carry information. Often we can easily spot 3-jm symbols that vanish-sometimes the 
SO(3) rules ( y1 + y2 + y3 = 0) are kept in the subgroup and always two components add 
to form a unique third. A comparison of table 2 with table 6 should demonstrate the 
compactness of the notation that we can use with a complex base. The fact that the 
3-jm's are complex seems a small price to pay for the ease of application and we have 
therefore chosen to tabulate the complex 3-jm's. If the symbols are required in the real 
basis then they can be found by using (Butler 1975 equation (11.6)): 

H H H 2  

Work is currently in progress on real I* coupling at the Inorganic Chemistry Depart- 
ment at the University of Copenhagen (T Damhus, private communication). 

5.3. Concluding remarks 

We have set up coupling theory for I using a complex basis with a numerical labelling 
system. This base is expressed in terms of SO(3) 3 SO(2) vectors 1 jm)  with an explicit 
phase standardisation. With the aid of Racah's Lemma we obtained coupling 
coefficients for I that have a phase standardisation selected with the definition of 
symmetrised 3-jm symbols in mind. We tabulated the isoscalar factors for the basic 
irreps so as to facilitate checking and the changing of the phase convention. 

Having followed this procedure we were left with a theory of icosahedral coupling 
that contains no information originating in another group in contradistinction to 
Golding (1973). The symmetries of the 3-jm and the multiplicity labels are easy to use 
and are defined entirely in terms of subgroup properties. Finally, we discussed the 
relationship to our work of that of Golding and explained why we did not use a real 
basis. It is hoped that this paper will enable icosahedral group calculations to be 
performed with relatively little effort. 

Acknowledgment 

This work was supported by a grant from the US National Science Foundation. 

References 

Butler P H 1975 Phil. Trans. R. Soc. A 277 545-85 
Clark H K and Hoard J L 1943 J. Am.  Chem. Soc. 65 2115-9 
Cohdn N V 1958 Proc. Camb. Phil. Soc. 54 28-38 
Condon E U and Shortley G H 1970 The theory of atomic spectra (London: CUP) 
Durrant P J and Durrant B 1970 Introduction to advanced inorganic chemistry (London: Longman) 



1216 D R Pooler 

Golding R M 1973 Molec. Phys. 26 661-72 
Harnung S E 1973 Molec. Phys. 26 473-502 
Judd B R 1955 Proc. R. Soc. A 232 458-74 
- 1957 Proc. R. Soc. A 241 122-31 
- 1963 Operator techniques in atomic spectroscopy (New York: McGraw Hill) 
Khlopin V P, Polinger V Z and Bersuker I B 1978 Theor. Chimi. Acta 48 87-101 
McLellan A G 1961 J. Chem. Phys. 34 1350-9 
Pooler D R 1978 J. Phys. A :  Math. Gen. 11 1045-55 
Racah G 1949 Phys. Rev. 76 1352-65 
Rotenberg M, Bivins R, Metropolis N and Wooten Jnr J K 1959 The 3-1 and 6-j symbols (Cambridge, MA: 

The Technology Press, MIT) 
Wigner E P 1940 in Quantum Theory of AngulurMomentum 1965 ed L C Biedenharn and H Van Dam (NY: 

Academic) pp 87-133 
- 1959 Group theory and its applications to the quantum mechanics of atomic spectra transl. J J Griffin (New 

York: Associated Press) 
Wybourne B G 1974 Classical groups forphysicists (New York: Wiley) 
Zdanov H S and Sevastianov N G 1941 C. r. (Doklady)  Acad.  Sci. URSS 32 432-4 


